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Abstract. Risk literacy requires basic elements of numeracy. It requires some 
ease with basics of probability theory. Yet, it is these basics which often cause 
difficulties, in particular when they are presented using abstract formalisms. 
This paper reviews a systematic framework for representations of information 
that eliminate difficulties and frequent fallacies in dealing with probabilities. A 
large subfamily of these representations is inspired by Otto Neurath’s isotypes 
and consists of so-called icon arrays. Another subfamily contains trees, which 
are hierarchical noncyclic graphs. Yet another subfamily consists of double 
trees that foster intuitions for Bayesian inferences. An interactive webpage is 
presented that can be used by both adults and children, with buttons and sliders 
to set parameters and with 3 different levels of statistical literacy. Furthermore, 
trees are examined as structures for combining multiple cues in order to 
classify situations under risk and make decisions. Plugins for constructing such 
trees and for reckoning with risks are presented and discussed. 

 
               INTRODUCTION 
 

Humans have dealt with risks since the beginnings of human history. Yet the 
rigorous, formal treatment of risks is a modern achievement. This mathematical 
treatment is essentially based on probability theory and was cemented during the 
early nineteenth century with the work of De Morgan on probability and life 
contingencies (1838). It attained full formal rigor only during the first decades of 
the last century, being embedded in the edifice of Mathematics. This edifice, solidly 
built on axioms and theorems proven by means of inferences based on classical 
logic, can appear daunting to untrained lay people. In fact, precisely this formal 
rigor hinders the natural approach to „doing” mathematics based on fruitful 
intuitions. The tension between rigorous, formal mathematics and mathematical 
intuitions remains a hot topic of mathematics education, especially at school level: 
what should be taught in school and how should it be taught so that school students 
acquire mathematical competencies beyond procedural techniques? The tension 
between the axiomatic treatment of Kolmogorov and the intuitive, quasi- empirical 
treatment of Pascal and Laplace, based mainly on numerical proportions, is so 
strong that it led Leo Breiman (1968) to state that „probability theory is condemned 
to having a right and a left hand—the right hand being the measure-theoretical 
approach that guarantees mathematical rigor, and the left hand meaning ‘intuitive 
probabilistic thinking’ ” (p. 7). The modern concept of a probability is defined by 
means of a real-valued function on a sigma algebra of subsets of a set that  satisfies 
certain axioms. The enthusiasm for this definition in the first decades of the 20th 
century was enormous. It proved, once again, that set theory had become, as David 
Hilbert put it „A paradise, from which no-one will throw us out.” (Hilbert, 1926). 
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In the sixties, mathematicians both in Europe and in the United States prompted the 
introduction of set theory in schools. This enthusiasm was enhanced by the 
possibility of representing sets by means of Venn diagrams. This representation of 
sets was at hand since John Venn had introduced his diagrams in the nineteenth 
century (Venn, 1880). Venn diagrams represent sets, their intersections and their 
unions by circles or ovals that may overlap or be nested within each other. In the 
sixties and seventies, these Venn diagrams were introduced as representations of 
sets in primary and secondary schools in most European countries and in several 
other countries around the world. To the dismay of mathematicians, school 
students, their parents and even many of their teachers were irritated and frustrated, 
to say the least. We cite here a typical example: Stephanie Krug, who went to 
school in Baden Württemberg back in the seventies and whom we interviewed, 
recalls her reluctance to draw triangles and circles in different colors placed in 
those Venn diagrams (Figure 1). “What for?” she asked.  

 
                          Figure 1: From a notebook of Stephanie Krug in 1974 
 

In fact, the reaction to set theory and Venn diagrams in schools represents one of 
those rare victories of teachers united with parents in many countries of the world. 
In Germany, the protests from teachers and parents were so strong that set theory 
was banned from primary school, and with it the Venn diagrams that had confused 
everyone. 

Convinced that probability theory requires both set theory and the functions defined 
on sets, German mathematics educators were reluctant to introduce probabilities 
earlier than in advanced secondary school.  This tendency changed somewhat 
during the nineties, and elements of probability theory and statistics were covered 
in short chapters in school math books . Sadly, these chapters were often left to be 
treated at the end of school years, with little emphasis and little enthusiasm.In this 
article, we focus on that realm of elementary stochastics, which examines the 
possible relationships between two bivariate variables and is essentially based on 
proportional reasoning. We posit that proportional reasoning, supported by dynamic 
visualizations of “natural frequencies” (see below for a definition of this term), can 
provide effective intuitions of probabilistic situations and risk literacy. We exhibt 
digital plugins for working with proportions related to risks, that have succefully 
been used at different institutions. 
 

            1. Proportions, frequencies, and probabilities 
 
With the results of cognitive psychologists during the second half of the twentieth 
century on people’s dealing with probabilistic inferences, things became even 
worse for the acceptance of probabilities in math education. Experiments by 
psychologists such as Amos Tversky and Daniel Kahneman discredited Breiman’s 
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left (intuitive) hand. Using many examples, Kahneman and Tversky (e.g., 1974) 
had shown that people can have enormous difficulties in dealing with various tasks 
that involved probability judgments. Note that in these tasks the necessary 
information was typically expressed in terms of probabilities. Likewise, they had 
shown that people have a hard time to correctly compare the probability of 
compound events with the probabilities of the constituents of these compounds. In 
the opinion of these two psychologists and many others who followed their line of 
research, people are unable to handle probabilities. More generally, the conclusion 
of these authors’ heuristics-and-biases program was that people are not "rational". 

This pessimistic view of human thinking did not go unchallenged. It provoked new 
empirical work as well as theoretical and methodological discussions, which were 
driven, to a considerable extent, by Gerd Gigerenzer and his students. In many 
experiments, these authors have demonstrated that so-called cognitive illusions can 
be made to disappear (e.g., Gigerenzer, 1991, Gigerenzer, Hertwig, Hoffrage, & 
Sedlmeier, 2008). They have argued that sometimes the “wrong” statistical (or 
logical) norm has been applied or that the stimulus materials used in experiments 
have not been representative of participants’ natural environment to which they 
have adapted. Most important for the present article were, however, their argument 
and their demonstrations that information needs representation and that 
performance in judgment tasks can improve tremendously when information is 
presented in terms of frequencies instead of probabilities. Some of the studies by 
Gigerenzer and his students then led to a complete redesign of Venn diagrams, 
which made a big difference for children and adults. Ovals with small abstract 
figures such as triangles and squares are not helpful. What helps, however, are grids 
with representations of individuals, items of all sorts, mythical creatures, or animals 
that are easy to sort and count. It is easy to choose content that is appealing and 
motivating even for young children. With these repreentations, elementary 
probabilistic thinking and risk literacy boils down to reckoning with proportions, 
comparing them, and drawing conclusions from comparisons.  

2. Classifications in risky situations 

The main scope of this work is to address how elementary proportions are at the 
basis of risk literacy. Let us recall that one of the main theorems of probability 
theorem states that in any aleatory experiment which can be repeated „ad 
infinitum“, the limit of relative frequencies converges to the real probability. This 
result basically implies that relative frequencies, which are proportions of succesful 
results divided by the total number of results, are the concrete, palpable 
approximations of probabilities. Mathematics educators often insist that working 
well with these approximations is a sufficient basis for risk literacy. Decisions in 
risky situations often depend on classifications of situations, which, on their turn, 
depend on the features or cues that characterize them. For instance, a doctor 
classifies a patient as “in high risk of heart attack” based on certain features 
extracted from the electrocardiogram of the patient and from behavioral cues, like 
the intake of certain medicines or chest pain. Once the patient is classified as “high 
risk” he/she is sent to the coronary care unit. If not, that is if he/she is not “at high 
risk” then the patient can be assigned a regular nursery bed. Medical situations are 
one of the great application fields in decision making, where risk literacy becomes 
fundamental. 
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Observe that in most medical situations, one feature alone is not enough for making 
a good decision. The immense progress in medicine and epidemiology is precisely 
the discovery of tests, symptoms, and behavioral traits that can fully characterize a 
patient’s risk situation, so that accurate decisions tailored to the specific risk can be 
made.  

The Covid pandemic that recently shocked the world is a wellknown example of 
medical decision making under high risk. Which are the relevant cues and how can 
their reliability be measured?  We had some direct experience because we, at least 
one of the authors, had to deal with the disease in the region of the German city of 
Tübingen. It was interesting to consult doctors who worked together with the main 
Hospital of Tübingen and capture their simple strategy for decision making in case 
of symptomatic patients. Basically, the decision tree of doctors during the months 
of April and May 2020 looked like this: 

 

Figure 2. A frequently adopted classification and decision tree for symptomatic 
patients at the beginning of the Covid pandemic 

Observe that a positive test did not lead to immediate hospitalization. Breathing 
problems led to hospitalization, but, in its absence, other cues werde checked. The 
order of those other cues was important here. In general, reserach has shown that a 
robust and accurate tree similar to the one shown in Figure 2 can be constructed by 
ordering the cues according to their validity, that is, the proportion of correct 
classifications. However, the validity of the cues considered at the beginning of the 
Covid pandemic was not yet established by large empirical studies, so that the 
situation was characterized by uncertainty rather than risk (Moussavi & Gigerenzer, 
2014). Nevertheless, there were some preliminary numbers and estimates that could 
be used to construct such trees and so we witnessed the development of these 
decision trees as an ad hoc process, in the sense that “the science had to be 
developed along the way” without a large base of prior knowledge.  

    3. Scaffolding Risk Literacy  
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Being able to construct tools, like trees, for decisions under risk, is one component 
of risk literacy. Which are other components? In what follows, we briefly present 
our (Martignon & Hoffrage, 2019) four-stage model of risk literacy. It consists of 
four components (Figure 3): 

I) Detecting risk and uncertainty  

II) Analyzing and representing uncertain or risky situations  

III) Comparing alternatives and dealing with trade-offs 

IV) Making decisions and acting 

 

                Figure 3.  Scaffolding Risk Literacy by means of four components 
(adapted from Martignon & Hoffrage, 2019).  

Of these components the first one – detecting and identifying risks and uncertainties in 
ordinary life – requires sufficient psychological disposition, either innate or acquired 
during childhood and youth. The second component – analysing and modelling risks – 
is not only psychological, but above all adaptive. It requires basic skills, but also basic 
education, especially in these times when we are confronted with a sheer amount of 
quantitative information on a daily basis – information that requires and provokes the 
acquisition of basic numeracy skills. The availability of information goes hand in hand 
with the availability of digital media and its tools, including those that can improve risk 
literacy. Concepts of risk and related tools need to be understood and trained in order to 
improve basic numeracy skills and risk literacy. To illustrate: if a person’s Covid-19 test 
was negative and she was told that the false negative rate of the test was, say, 2%: is she 
now at risk? And what if the test was positive? Answers to this type of question became 
crucial to citizens all over the world during 2020. But it is, of course, not just the Covid 
19 pandemic which prompts our need to understand the validity of features and how it 
can be computed. For instance, when a woman is told that regular screening reduces the 
risk of breast cancer by 50%, what should she do? Or if we are told that eating bacon 
sandwiches increases our risk of getting bowel cancer by 20%, how seriously should we 
try to avoid bacon sandwiches? One message of this paper is that there are simple tools 
and principles for analysing and modelling risks and uncertainties, so that these become 
amenable to being assessed and compared in terms of elementary proportions that can 
provide the basis for sound decisions, even of young students. The third component of 
risk literacy – namely comparing alternatives and dealing with trade-offs – builds on the 
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first two, but goes beyond them and therefore represents an additional skill. This paper 
is concerned with the second, third and fourth components of risk literacy.  

 
      4. Proportional thinking and logical principles at the 
foundation of classification 
 

A child of 10 years can deal with the following situation: Consider 25 pupils in a 
classroom, some are boys, and some are girls. Some have short hair. Some are boys 
and have short hair. Some wear skirts, some wear trousers. Some wear skirts and 
have short hair. Would one bet that a child of our class who wears a skirt is a girl? 
Most probably we would. But would we bet that a child with short hair is a boy? 
Probably not! Features or characteristics, like „short hair” or „wears a skirt”, are the 
essence of classification and inference in everyday life and we should early learn to 
deal with them. We extract features, items, and concepts out of situations with ease, 
we are able to classify based on features and tend to define situations, items, and 
concepts based on features. 

In this example, three bi-variate variables were mentioned: Gender (boy/girl), Hair 
length (short/long), and Dress (trousers/skirt). The variables (here, three) and the 
individual objects (here, 25 pupils) can be conceived of as two poles. To start with 
the former: the variables can be used to define classes and to classify objects. They 
are, hence, on a population level and define what all have in common that belong to 
this class. Note that 25 is, in the present example, the entire population; but from a 
higher point of view this number can be seen as describing just one sample of a 
population that is, in principle, unlimited – and in fact, there are other classrooms of 
the same school, other schools in the same city, other cities in other countries, and 
other cohorts in coming years. The direction from “class to object”, or from 
“population to individual” is deductive.  

Conversely, one could also start from the other pole, the individuals. To make it 
concrete: A teacher could ask her 25 pupils to put all tables aside and to gather all 
in the middle of the room. She could then send some to the left side of the room – 
Peter, Thomas… and Rafael go here, and Sandra, Yvonne …, and Kim go there – 
and let the pupils detect her organizing principle. While the teacher proceeds in a 
deductive manner and applies a general rule that determines whether a given 
individual goes left or right, the pupils whose task it is to detect the rule, need to 
make an inductive inference: They need to ask what does the one group of 
individuals have in common, what does the other have in common, and what 
discriminates between them? Having detected this principle, they should be able to 
predict where the teacher would place a new pupil (that is, to make an out-of-
sample prediction if the door would open and pupil number 26 enters).  

This little exercise, which can easily be implemented in the classroom, illustrates 
the difference between deductive reasoning (from population to sample, or top-
down) and inductive reasoning (from sample to population, or bottom-up). When 
the teacher uses a variable to form groups, she uses deductive reasoning (“All girls 
should be on the left side – you are a girl – therefore you go left”). When she does 
not reveal her criterion but asks pupils to find it out, they engage in inductive 
reasoning. Note that this distinction is akin to Piaget’s (1956) distinction between 
intensional and extensional reasoning about features in a given sample, which goes 
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back to the Port Royal Logic. Features are intensional aspects of elements of sets, 
like „wearing a skirt”. This is a variable that characterizes an unlimited number of 
objects and specifies what the members of this category (or set, or subpopulation) 
have in common. In contrast, if we start with a list of the names of all children 
wearing a skirt in our class, then we are performing an extensional operation 
rendering all children wearing skirts by listing them. The question whether 
extension and intension can be treated in one framework goes back a long way: The 
dichotomy can be found at the heart of what is considered the second epoch of logic 
initiated by Antoine Arnauld and Pierre Nicole in their book “Logic or the Art of 
Thinking” which was published in 1662. The dichotomies we just discussed 
(deductive vs. inductive; top-down vs. bottom-up, intensional vs. extensional) are 
intimately related to the two visual representations that we already mentioned in our 
introduction. Let us consider the deductive, top-down, and intensional viewpoint 
first. It is directional: from population to sample. It goes from features that 
characterize an, in principle, unlimited (and hence, not countable) population to 
(countable) individuals that possess these features. In other words, it goes from 
qualities (variables) to quantities (individuals). This viewpoint focusses on sets, but 
not just on how many individuals are in these sets. Structure (classes defined by 
features) comes first – content (individuals as carriers of features) second. A way to 
visualize sets and structure is to use adequate “good-old” Venn-diagrams. The 
regions or areas depicted in these diagrams specify what all have in common who 
are in a specific area, but these individuals (who, together, build the “all” in a 
specific area) are not individually identified.  

The other viewpoint – inductive, bottom-up, and extensional – is also directional, 
but now from individual to population. The starting point is constituted by 
“countable individuals”, say pupils in a classroom. By inspecting them closer and 
by comparing them, the question arises how they can be described, what they have 
in common, and, eventually, how they can be distinguished from each other, that is, 
which variables could be used to describe and to classify them. A way to visualize 
countable individuals is to use icons for representing each of them. A given icon 
depicts features of a given individual, but these features (along which individuals 
can be distinguished) are not displayed as a set. 

Venn-diagrams and icons can be seen as the two polar representations that visualize 
the starting points of the two perspectives described above. Venn-diagrams 
visualize sets and icons visualize individuals. Sets as a starting point allow one to 
use a variable to classify an individual, and individuals as a starting point invites 
one to ask how they can be described and grouped. To illustrate, the 
abovementioned teacher in the class with 25 pupils starts with a variable, say 
gender that defines the set of boys and girls, then looks at her pupils, one after the 
other, and applies this variable as a classifier to determine, in a deductive manner, 
who should go to which side of the room. Conversely, those children who find 
themselves on one side of the room, without having been told anything about the 
organizing principle, first look at their ingroup and on those on the other side. They 
hence start from the individuals and then, in a second step, consider potential 
variables to test whether they could explain the assortment. Finding potential 
variables to scrutinize them requires inductive reasoning, testing whether a 
candidate variable can explain the observed grouping requires deductive reasoning. 
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For each of the two directions described above, we have seen that the natural next step 
was to leave the viewpoint (as defined by one’s standpoint) and go in the direction of the 
other pole. The deductive view would hence apply intensional reasoning, starting with a 
classifier, and then look at a given individual in order classify it. This amounts to placing 
a certain individual into one of the areas in a Venn-diagram. Content is used to fill 
structure in a top-down manner. Conversely, the inductive view wonders how 
individuals, represented by icons, could be sorted. By shifting scattered icons around and 
grouping them according to defining characteristics, sets emerge in a bottom-up manner. 
Both directions from the two starting points meet in the same middle. No matter whether 
sets are filled with individuals, or whether individuals are identified as members of sets 
and sorted accordingly, at the end of each process there is structure with content, or, 
conversely, content with structure. 

The discussion above can be supported by the panels displayed in Figure 4. Panels A and 
F of Figure 4 artificially separate objects and variables. Panel A focuses on objects but is 
mute about their features. Panel F focusses on features and possible relationships among 
them but does not contain any countable objects. Panels A and F can thus be seen as two 
poles: Objects without features and variables without objects, respectively. We already 
said that in our daily perceptions, these two poles are not separated, and it is hence only 
straightforward to explore the middle-ground between the two poles. Moving from Panel 
A towards Panel F leads us to Panel B which adds features to the objects. These features 
allow for sorting objects, which goes together with grouping them into classes or sets. 
The result of such grouping is shown in Panel C. Evidently, grouping facilitates counting. 
Note that sorting, classifying, and counting are elementary statistical operations even 
children at a very young age are capable of. 
Starting at the other pole and moving from Panel F towards Panel A leads us to Panel E 
which fills the space of possibilities with objects. Compared to Panel F, Panel E leaves 
the world of pure structure and reminds one that the space consists of countable units – 
even if, in contrast to the present Panel E, these units are not yet counted, and even if 
these numbers may be infinite (e.g., repeated outcomes of a chance device like a roulette 
wheel).  
 

 

 
Figure 4. Panel A: 25 distinguishable objects without any features. Panel B: The same objects, 
but now described with respect to two variables, dress and hair length. Panel C: The same objects, 
but now sorted according the two variables. Panel D: The same objects and assortment are now 
visualized on a more abstract level. Panel E: Visualization of possibilities that arise from 
combining two dichotomous variables, hair length and dress. For each of the possibilities, the 
number of objects from a given sample is visible. Panel F: Venn-diagram visualizing the 
possibilities that arise from combining two dichotomous variables.  

 
Johnson-Laird’s mental model theory is essentially based on exactly this step from Panel 
F to Panel F. When solving reasoning tasks that could be supported by Venn diagrams 
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(e.g., “All P are Q” and “Some Q are R”; Is it true that “some R are not-P”?), mental 
model theory posits that people do not operate in an abstract variable space, but construct 
individual instances, thereby searching for examples that confirm or disconfirm the 
conclusion that they are asked to scrutinize. Arranging the objects of a finite sample that 
facilitates counting may lead to a representation such as the one depicted in Panel D.  
 
Panels C and D hit the middle ground between the two poles. On the one hand (when 
coming from Panel A), description and structure are added to otherwise indistinguishable 
individual objects, and on the other hand (when coming from Panel E), an abstract 
structure and a space of possibilities is filled with concrete and countable cases. While 
Panel C maintains the analogous representation of individual cases that were already 
displayed in Panel B, Panel D inherits the level of abstraction that comes with a focus on 
possible features and their combinations displayed at the right end of the Figure. 
 
The results on icon arrays, as presented in the next section, clearly indicate that the 
extensional approach fosters probabilistic intuitions of untrained people. We recall here 
that it was Otto Neurath who, during the first half of the twentieth century, used and 
introduced formats such as those depicted in Panel C – he called those little icons 
isotypes, henceforth we will refer to arrays of such isotypes also as icon grids or icon 
arrays.  
 

 5. Icon arrays for risk literacy: following Otto Neurath 

Icon arrays are a form of graphical representation that illustrates principles for the design 
of risk communications, inspired by Neurath’s Isotypes (Trevena et al., 2013). An icon 
array is a form of pictograph or graphical representation that uses grids of matchstick 
figures, faces, or other symbols to represent statistical information. An indicator of good 
quality risk communication is an adherence to the principle of transparency, which is 
definitely a characteristic of icon arrays: such representations define an appropriate 
reference class, and risks are presented in absolute rather than relative numbers (e.g., 1 
out of 1,000 fewer women die from breast cancer with mammography screening as 
opposed to communicating the relative risk reduction of 20%). Icon arrays can be 
designed to communicate a variety of statistics transparently, including simple and 
conditional event frequencies (e.g., conditional probabilities). In medical risk 
communication, for instance, icons typically represent individuals who are affected by a 
risk, side-effect, or other outcome. Icon arrays are helpful for communicating risk 
information because they draw on people’s natural tendency to count (Dehaene, 1996), 
while also facilitating the visual comparison of proportions. For example, to represent a 
3% risk of infection, icon arrays represent the proportion of individuals who end up with 
an infection, for instance, an icon array may just depict 100 icons, of which 3 are marked 
as „special“. The one-to-one match between individual and icon has been proposed to 
invite identification with the individuals represented in the graphic to a greater extent 
than other graphical formats. Icon arrays are suitable for facilitating the understanding of 
risk information due to two characteristics: First, they arrange the icons systematically 
(Fig. 4C) rather than randomly (as in Fig. 4B). Second, and relatedly, they visualize a 
part-whole relationship. 

Institutions devoted to fostering the intuitions of “responsible patients” like the Harding 
Center in Berlin are interested in propagating basics of risk literacy. Another institution, 
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the AOK, which is one of the main insurance companies in Germany, communicates 
information to patients by means of fact boxes, as illustrated in Figure 5.  
 

 

Figure 5. A fact box used by the largest health insurance company in Germany, the AOK, 
for communicating information on the risk reduction caused by regular screening.  

What does the patient perceive here? The array on the left shows icons for 1,000 women 
who do not perform screening. Five of them die of breast cancer. The array on the right 
side shows 1,000 women who undergo screening regularly. Four of these women die of 
breast cancer, implying that the absolute risk reduction through regular screening is 1 per 
1,000 (the reduction from 5 per 1,000 to 4 per 1,000 is 1 per 1,000). The so-called 
relative risk reduction in the breast cancer situation is 20% for women performing 
screening (1 per 1,000 whose lives could be saved compared to 5 per 1,000 who would 
lose their lives without screening; see section 10 for dynamical representations of risk 
changes).  

       6. Beyond Neurath: dynamic icon arrays 

Even though icon arrays are already very 
helpful in facilitating understanding (Garcia-
Retamero & Hoffrage, 2013), there is still room 
for improvement: one can make them dynamic. 
In a dynamic webpage designed by Tim 
Erickson 
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(https://www.eeps.com/projects/wwg/wwg-en.html), icon arrays can be sorted and 
organized by a simple click on a button (see, for instance, the HIV example, which is also 
briefly described below), so that relevant features can be quantified at a glance. Sorting is 
the first elementary statistical action we perform, sometimes just mentally (Martignon & 
Hoffrage, 2019). Dynamic displays can thus become particularly useful for 
communicating about co-occurring or conditional events, which is relevant for 
understanding the meaning of features in the medical domain. For this purpose, sorting 
icon arrays becomes essential, as we illustrate with the example of 100 people who were 
tested as to whether they are HIV positive (Figure 6).   

 

  

 

 “no disease and tested negative” 

 “no disease but tested positive” 

  “disease is present but tested negative” 

        “disease is present and test is positive” 

 

Figure 6. This icon array, unsorted (left) and sorted (right), represents 100 people, 
diseased or not diseased, who are tested as to whether or not they are HIV positive. 

 

                7. Constructing trees and double trees starting from icon arrays 
 
The validity or predictive value of a feature (e.g., a positive test, or breathing problems) 
can be computed by means of Bayes’ Theorem. Consider, a physician receives new 
evidence (E) in form of a positive result. To infer whether a certain disease (D) is present 
or not, the physician should use her prior probability that the disease (D) is present, as 
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well as the two likelihoods of a positive test result (if the disease is present and if the 
disease is not present, respectively) to calculate the so-called posterior probability that 
the disease is indeed present given the evidence, i.e., the positive test result. The 
corresponding formula is called Bayes’ Rule, and was first formulated by the 
mathematician, philosopher and minister Thomas Bayes in the eighteenth century. Using 
Bayes’ rule, the probability that the disease (D) is present once a new piece of evidence 
becomes known is calculated as follows: 
 
 

 
                                          Formula1: Bayes’ rule 

The formula shows how to solve this evidential reasoning problem: In the medical setting, 
P(D|E) is the probability that the patient has the disease given that they tested positive on the 
test. People are notoriously bad at manipulating probabilities, as a plethora of empirical 
studies have shown (Eddy, 1982; Gigerenzer & Hoffrage, 1995).  

The tree in Figure 7 represents information about disease and test in a causal, sequential 
and hierarchical setting by means of a tree: The presence of the disease, represented by D+, 
is the label on the left node or leaf of the tree in the first level, while D- represents its 
absence. In this particular case  the number 0.01 on the branch between the initial node and 
the node labeled with D+ in Figure 7 represents the probability of the disease being 
present, also called its incidence or base rate.  

 

Figure 7: A tree representing the binary categories “Disease” and “Test result” (D+ means 
that the disease is present, while D- denotes absence of the disease; T+ and T- denote a 
positive and negative test result, respectively).  

Gigerenzer and Hoffrage (1995) have proposed a didactical simplification or reduction of 
the initial probabilistic treatment, which deserves the name of a heuristic: the systematic 
use of so-called natural frequencies. They argued that the kind of reasoning needed to 
make assessments on the diagnosticity of a test or symptom (or, in general, of a feature 
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characterizing a category) can be facilitated by changing the format of information 
representation. In the same article (Gigerenzer & Hoffrage, 1995) have empirically shown 
that diagnostic assessments based on new evidence could be substantially improved when 
the statistical information was provided by means of natural frequencies compared to 
representation in terms of probabilities.  

                  8. Dynamic trees of natural frequencies 

Natural frequencies are the frequencies that naturally result if a sample is taken from a 
population. In case of one hypothesis or cause, like a disease, and of a piece of binary 
evidence, like the positive or negative result of a test, natural frequencies are the result of 
counting members of a given sample in each category. Translating probabilities into 
natural frequencies is always possible and becomes an ecologically rational heuristic that 
facilitates reasoning. In medicine, physicians’ diagnostic inferences have been shown to 
improve considerably when natural frequencies are used instead of probabilities 
(Gigerenzer, 1996; Hoffrage, Lindsey, Hertwig, & Gigerenzer, 2000). Figure 8 illustrates 
both approaches to the causal tree: one by means of probabilities and one by means of 
natural frequencies.  
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D+ D-

T+ T- T+ T-

 
   Figure 8. Two trees, one labeled with probabilities, the other labeled with natural 

frequencies, representing the knowledge of the physician on a certain patient concerning 
breast cancer. 

Trees with natural frequencies as labels can be constructed in the causal direction, i.e., 
from cause to evidence, as in the Figures above. The beneficial effect of natural 
frequencies could also be used as a basis to design tutorials that teach students to better 
cope with probability representations. Instead of teaching them how to plug probabilities 
into Bayes’ rule, they have been taught how to translate these probabilities into natural 
frequencies and subsequently derive the solution for there. In an online-tutorial, Sedlmeier 
& Gigerenzer, 2001) could show that such frequency-tree  representations were superior to 



14 
 

probability trainings (long-term performance of over 90% compared to 20%, respectively). 
Likewise, representation training also proved to be superior over rule training in a classical 
classroom setting with medical students, using medical problems as content (Kurzenhäuser 
& Hoffrage, 2002).  

Natural frequencies go hand in hand with icon arrays as illustrated by the dynamic web 
page the reader can reach by means of the QR Code below 
(https://www.eeps.com/projects/wwg/wwg-en.html) 

 

This page can help the public to become “informed” and “competent” when dealing both 
with the sensitivity or specificity of a test and with its positive/negative predictive value.  

These resources are designed to support instruction of children and adults to become informed 
and competent when 

 dealing both with the sensitivity or specificity of a test, 
 dealing with positive/negative predictive values of tests and dependence on base rates, 
 understanding base rates, 
 understanding relative and absolute risks, and 
 understanding the subtleties of features’ conjunctions. 

To summarise, the resource is designed to make the teaching and training of risk literacy easy 
and transparent, by offering multiple complementary and interactive perspectives on the 
interplay between key parameters. Such interactive displays for adults have been introduced, 
for instance, by Garcia-Retamero, Okan, & Cokely (2012). Clicking on any of the three 
sections, leads to pages where a variety of contexts are presented. For instance, in The 
explanatory power of features one can choose between contexts – one is Pets and bells, which 
is quite appropriate for children of fourth class – and see a display like the following: 
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                    Figure 9. Representations of 10 pets, cats and dogs, random and sorted. 

The natural question is: “If a pet is wearing a bell, is it likely to be a cat?” The task is to judge 
the validity, or predictive value of this feature for the category Cats. The button “group bells 
together”, at the left side under the picture, sorts the pets, so that it becomes easy to visualize 
pets wearing a bell.      
The role of base rates is illustrated, through the use of the sliders placed under the array. 
Maintaining the total number of pets equal to 10 one can enhance the base rate of “cats”, 
while keeping the sensitivity of “bell” constant, as illustrated in Figure 10. 
 

 
Figure 10. In this display the number of pets remains 10 but the base rate of cats is now “6 out of 
10” 

Wearing a bell now becomes moderately predictive for the category “cats”. The next 
instructional step is to construct trees. A button at the top left of the grid in Figure 10 leads 
to the corresponding double tree, illustrated in Figure 11.  
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                              Figure 11. The double tree from the icon array in Figure 10. 

The double tree in Figure 11 exhibits two inference directions: one is causal the other is 
diagnostic. The double tree is a simple and transparent way of approaching Bayesian 
reasoning. Studies by Wassner (2004) clearly demonstrated the effectiveness of such double 
trees for fostering successful Bayesian reasoning in the classroom. He worked with ninth 
grade students in Germany.  
 
               10. Other elements of risk literacy by means of dynamical 
representations 
 
The Webpage “Worth the risk?”, also illustrates the subtleties connected with risk reductions 
and increases in transparent ways that are easy to grasp. Figure 12 shows 20 boys who have 
had a bike accident, ten of which were wearing a helmet. The faces with a pad and a black eye 
represent boys with severe injury caused by the bike accident. 
 

 
Figure 12. Icon array exhibiting 20 boys having a bike accident, ten of them wearing helmets 

Simply sorting the icon array by grouping helmets together allows an easy grasp of the risk 
reduction provided by helmets.  

While all the dynamical resources described so far are devoted to the second component of 
Risk Literacy, as described in Figure 3, the third author of this paper has also designed and 
produced plugins for the third and fourth component. Opening https://codap.xyz/ the reader 
finds, among many plugins, also ARBOR. This plugin is designed for the construction of 
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trees for classification and decision, based on data concerning features for classification. 
Decision trees constructed by means of clever algorithms which can be used in complex 
medical situations exist and have been developed by eminent statisticians, such as CART 
(Breiman, 1996); implementations of those algorithms are available in common software 
platforms such as R (Erickson & Engel, 2023). The trees proposed in ARBOR are utterly 
simple and intuitive and young students can easily understand them. The basic idea is that the 
display starts with an initial node that specifies a response variable—the binary criterion or 
category the tree is designed to predict. Then the user can drag any attribute to any node in 
order to make (or replace) a branch based on that attribute. Finally, to make a prediction (in 
the case of a classification tree), the user has to add a “diagnosis leaf” to the end of every 
branch to indicate what conclusion you should come to if a case arrives at that branch. Let’s 
see what that looks like in practice using a famous dataset about heart patients from Green 
and Mehr (1999). It has 89 cases with four attributes: MI (whether the patient had a 
myocardial infarction, a heart attack); pain (whether the patient complained of chest pain); 
STelev (whether the “ST” segment on an EKG was elevated); and oneOf (whether the patient 
showed any of four other symptoms). First, the user must set up a response variable. This 
involves deciding which attribute the tree will predict, and which value the tree will orient 
towards. In our situation, we are trying to predict whether the patient will have a heart attack 
(MI) using the other three attributes. We also need to orient our tree: will we look at the 
proportion of patients that do get a heart attack (MI = yes) or the proportion that do not (MI = 
no)? In Arbor, the response variable and its orientation appear in the “root” node of the tree, 
represented by a box as shown in the figure.  

 

                          Figure 13. The positive value of the criterion (MI = Infarction)  

Growing the Tree. Now we want to “grow” our tree. We will do so by dragging attributes 
(oneOf, STelev, or pain) from the palette and dropping them on a node. CODAP’s built-in 
graphing helps us explore the data before constructing a tree. In the case of this question, we 
can make a graph that shows how the value of MI is associated with pain. The figure shows 
that, indeed, a patient is more likely to have an MI if they complain of chest pain—but to a 
student, the relationship probably does not look as they expected. Even with chest pain, a 
large majority of patients do not get a heart attack.  

 

    Figure 14. User-friendly display created by the plugin for the statsistics of three cues 
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The plugin allows then to construct individual trees for each cue and then compose trees with 
three cues like the one below:            

 

            Figure 15. This tree has been constructed: One can drag and place cues one under the 
other and construct trees. 

This tree could be constructed also with other orderings and we would be able to compare 
their performances and choose the „best“ one. The plugin is thus a facilitating tool for doing 
the necessary steps for good classification in a simple user-friendly way. There are many 
other useful plugins in the webpage https://codap.xyz. Another plugin is, for instance, Lotti, 
which is specifically constructed for component 4 of risk literacy. Here the plugin presents the 
user with „doors“ and alternatives with different outcomes. The plugin provides the typical 
„lottery“ situation, with fixed gain versus situations of risk versus benefits. 

 

 Figure 16. A game for acquiring an understanding of risk through clicking either on plan A, with a 
fixed allowance, or B with a varying allowance, with largher expected value. 
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Concluding, we simply stress the benefits of the dynamical, interactive tools for 
classifications based on dynamic, extensional representations of information, fostering 
intuitions on risk and provide tools of risk literacy.  
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